Department of Chemistry Programme Specific Outcome (PSO) - Course Outcome (CO)

Programme Specific Outcome (PSO) -							
PS	PSO 1. The ability to explain theoretical knowledge of basic Principles, Strategies, Logic relating to Bond formation and						
DC	Bond cleavage, three dimensional structures of compounds and other facts.						
PS	0 2 . The a	only to demonstrate practical knowledge of qualitative and	a quantitative analysis of various organic				
Sem.	Courses	Content of CU Syllabus	Course Outcome				
1 ST	CC1/ GE 1	 Kinetic Theory of Gases and Real gases Concept of pressure and temperature; Collision of gas molecules; Collision number and mean free path. Nature of distribution of velocities, Maxwell's distribution of speed and kinetic energy; Average velocity; Principle of equipartition of energy Deviation of real gases from ideal behavior; compressibility factor; Boyle temperature; Andrew's and Amagat's plots; van der Waals equation and its features; Existence of critical state, Critical constants in terms of van der Waals constants; Law of corresponding states. Liquids Definition of Surface tension, its dimension and principle of its determination using stalagmometer; Viscosity of a liquid and principle of determination of coefficient of viscosity using Ostwald viscometer; Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only) Chemical Kinetics Introduction of rate law, Order and molecularity; Extent of reaction; rate constants; Rates of First, second and nth order reactions and their Differential and integrated forms (with derivation); Pseudo first order reactions; Determination of order of a reaction by half-life and differential method. Temperature dependence of rate constant; Arrhenius equation, energy of activation; Atomic Structure Bohr's theory for hydrogen atom and Bohr's model. Sommerfeld'smodel. Quantum numbers and their significance. Pauli's exclusion principle. Hund''s rule. Electronic configuration of many electron atoms. Aufbau principle and its limitation Chemical Periodicity Classification of elements on the basis of electronic configuration; addition potential. Electron affinity and electronegativity. Periodic and groupwise variation of above properties in respect of s- and p- block 	 Students will be able <i>CO 01.</i> To understand kinetic theory of gases. <i>CO 02.</i> To get an introduction to the basic concepts of pressure, temperature and velocity of ideal gases. <i>CO 03.</i> To explain the key concepts of degree of freedom, equipartition of energy and specific heat. <i>CO 04.</i> To get a concept of collision among molecules and with the wall. <i>CO 05.</i> To understand deviation of real gas from ideal behavior. <i>CO 06.</i> To understand critical constant and vanderwall's constant. <i>CO 07.</i> To be able to derive rate equations from mechanistic data. <i>CO 08.</i> To make use of simple models for predictive understanding of physical phenomena associated to kinetics. <i>CO 09.</i> To study the dependence of the rate of chemical reactions on properties like pressure, temperature, presence of catalyst. <i>CO 10.</i> To explain various theories and models relating to structure of atoms and their merits and demerits <i>CO 11.</i> To explain various theories of elements in the periodic table vis-à-vis electronic configuration. <i>CO 12.</i> To discuss various theories pertaining to definition and classification of acids and bases 				

elements' Acids and Bases Bronsted - Lowry concept, conjugate acids and bases. Relative strengths of acids and bases. Lewis acid - base concept, Lux Flood concept and solvent system concept. Hard and soft cids and bases. Fundamentals of Organic Chemistry Electronic displacements: inductive effect, resonance and hyperconjugation; nucleophiles and electrophiles; reactive intermediates: carbocations, carbanions and free radicals. Stereochemistry Different types of isomerism; geometrical and optical isomerism; concept of chirality and optical activity (upto two carbon atoms); asymmetric carbon atom; interconversion of Fischer and Newman representations; enantiomerism and diastereomerism, meso compounds; threo and erythro, D and L, cis and trans nomenclature; CIP Rules: R/S (only one chiral carbon atoms) and E/Z nomenclature. Nucleophilic Substitution and Elimination Reactions Nucleophilic substitutions: SN1 and SN2 reactions; eliminations: E1 and E2 reactions (elementary mechanistic aspects); Saytzeff and Hofmann eliminations.	 <i>C0 13.</i> Various permanent Electronic Effects i.e., inductive effect, resonance and hyperconjugation etc with some examples <i>C0 14.</i> Definitions of Nucleophiles and Electrophiles with suitable examples <i>C0 15.</i> Reactive intermediates: carbocations, carbanions and free radicals. <i>C0 16.</i> Students will gather knowledge about the three dimensional structure of any Sp3 hybridised chiral organic compound by explaining <i>C0 17.</i> Classification of Isomerism, Projection Formulae, Representation and Interconversion of a three dimensional structure in Fischer and Newman projection, Chirality and asymmetry, Dextrorotatory and laevorotatory isomers <i>C0 18.</i> Concept of chirality and optical activity, optical isomers e.g., Enantiomer and Diastereoisomer <i>C0 20.</i> Concept of meso compounds <i>C0 21.</i> After studying this topic students will gain the knowledge of two unique types of reactions i.e., substitution and eliminations by learning the followings Concept, Types and elimentary mechanisms of elimination reactions.(E1 and E2) <i>C0 22.</i> Orientation(Saytzeff/Hofmann rules <i>C0 23.</i> By carrying out different types of
Practical Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture. Estimation of oxalic acid by titrating it with KMnO4.	 <i>CO 23.</i> By carrying out different types of estimations students will have an idea of quantitative experiments <i>CO 24.</i> They also become capable of

	Estimation of water of crystallization in Mohr's salt by titrating with KMnO4. Estimation of Fe (II) ions by titrating it with K ₂ Cr ₂ O ₇ using internal indicator. Estimation of Cu (II) ions iodometrically using Na ₂ S ₂ O3. Estimation of Fe(II) and Fe(III) in a given mixture using K ₂ Cr ₂ O ₇ solution	handling burette and pipette
CC2/GE2	 Chemical Thermodynamics: Intensive and extensive variables; state and path unctions; isolated, closed and open systems; zeroth law of thermodynamics; Concept of heat, work, internal energy and statement of first law; enthalpy, H; relation between heat capacities, calculations of q, w, ΔU and ΔH for reversible, irreversible and free expansion of gases. Standard states; Heats of reaction; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; Laws of thermochemistry, Kirchhoff's equations. Statement of the second law of thermodynamics; Concept of heat reservoirs and heat engines; Carnot cycle; Physical concept of Entropy; Entropy change of systems and surroundings for various processes and transformations; Auxiliary state functions (G and A) and Criteria for spontaneity and equilibrium. Thermodynamic conditions for equilibrium, degree of advancement; Variation of free energy with degree of advancement; Equilibrium constant and standard Gibbs free energy change; Definitions of KP, KC and KX and relation among them; van't Hoff's reaction isotherm, isobar and isochore from different standard states; Shifting of equilibrium due to change in external parameters e.g. temperature and pressure; variation of equilibrium constant with addition to inert gas; Le Chatelier's principle. Solutions Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions; Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions; Distillation of solutions, Lever rule; Azeotropes Nernst distribution law and its applications, solvent extraction. Phase Equilibria Phase equilibria; Phase diagrams of one-component systems (water and CO2). Solids Forms of solids, crystal systems, unit cells, Bravais lattice types, Symmetry elements; Laws of Crystallography- Law of constancy of interfacial angles, Law of rat	 <i>CO 01.</i> To understand the principle of conservation of energy and how this principle can be used to assess the energy changes that accompany physical and chemical processes. <i>CO 02.</i> To examine the means by which a system can exchange energy with its surroundings in terms of the work it may do or the heat it may produce. <i>CO 03.</i> To understand the thermodynamic description of mixtures state function, exact, inexact differential <i>CO 04.</i> To understand the statements of 1st and 2nd laws of thermodynamics. <i>CO 05.</i> To learn the thermodynamic aspects of various processes and reactions. <i>CO 06.</i> To understand the concept of thermochemistry enthalpy change of different processes <i>CO 07.</i> To get the concept of Entropy (S) from Carnot cycle and the significance of Helmholtz free energy(A) & Gibb's free energy (G) <i>CO 08.</i> To explain the criteria of spontaneity in terms of S,H and G. <i>CO 09.</i> To be able to derive important thermodynamic relations <i>CO 10.</i> To understand Raoult's law and Raoult's law to explain ideal solutions <i>CO 13.</i> To describe ideal liquid mixtures. <i>CO 14.</i> To explain partially miscible and immiscibele liquid systems by taking appropriate examples. <i>CO 17.</i> To describe how a solute

2 ND	Aliphatic Hydrocarbons Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structures. Alkanes: (up to 5 Carbons). Preparation: catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis. Alkenes: (up to 5 Carbons). Preparation: catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis. Alkenes: (up to 5 Carbons). Preparation: elimination reactions: dehydration of alcohols and dehydrohalogenation of alkyl halides; cis alkenes (partial catalytic hydrogenation) and trans alkenes (Birch reduction). Reactions: addition of bromine, addition of HX [Markownikoff's (with mechanism) and anti- Markownikoff's addition], hydration, ozonolysis. Alkynes: (up to 5 Carbons). Preparation: acetylene from CaC2; by dehalogenation of tetra halides and dehydrohalogenation of vicinal dihalides. Reactions: formation of motal acetylidae hydration meantion	 distribute itself in two immiscible liquids, CO 18. To state and explain Nernst's distribution law, CO 19. To apply and derive an expression for modified Nernst distribution law for a special case in which solute associate or dissociate in one of the solvent, CO 20. To classify systems as heterogeneous and homogeneous systems CO 21. To define equilibrium and metastable equilibrium CO 22. To appreciate the importance of phase rule equation in dealing with heterogeneous CO 23. General Preparation of different alkanes, alkenes and alkynes with mechanism CO 24. Some important Chemical reactions of alkanes, alkenes and alkynes and alkynes with mechanism CO 25. Addition of an unsymmetrical addendum to an unsymmetrical substrate by applying Markonikoff's rule CO 26. Acidity of protons of acetylene
	Redox Reactions Ion – electron method of balancing equation of redox reaction. Elementary idea on standard redox potentials With signm conventions. Nernst equation. Influence of complex formation, precipitation change ofpH on redox potentials. Formal potential. Feasibility of redox titration , redox potential at the equivalence point Error Analysis and Computer Applications Error analysis: accuracy and precision of quantitative analysis, determinate,indeterminate, systematic and random errors; methods of least squares and standard deviations. Computer applications: general introduction to computers, different components of a computer; hardware and arithmetic; Introduction to computer languages.	 <i>CO</i> 27. To explain the concept of redox reactions on th basis of redox potentials. <i>CO</i> 28. to discuss the feasibility of redox titration, redox indicators, redox potential at the equivalence point <i>CO</i> 29. To explain the concept of redox reactions on th basis of redox potentials. <i>CO</i> 30. To discuss the feasibility of redox titration, redox indicators, redox potential at the equivalence point
	Chemical Bonding and Molecular Structure Ionic Bonding General characteristics of ionic bonding. Lattice energy and salvation energy. Born –Lande equation.	<i>CO 31.</i> To discuss about the structure of ionic compounds and Their

	CC3/GE3	Born-Haber cycle. Fajan's rule. dipole moment Covalent Bonding – VSEPR Theory, Hybridisation. Structure of molecules, MO treatment of homo nuclear and heteronuclear molecule. Comparative study of p-block elements Group trends in electronic configuration, modification of pure elements, common oxidation states, inert pair effect and their important compounds.	CO 32. CO 33.	important properties. Able to calculate the theoretical values of lattice energy and also experimental value. To discuss about covalent molecules, VSEPR theory. MO treatment of homonuclear and hetero nuclear molecules.
		Transition elements (3d series) Electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complex etc. for Mn, Fe, Cu. Electronic configuration, oxidation states, colour, magnetic properties relating to Lanthanides and Actinides. Coordination Chemistry Werner's co ordination theory ,Valence Bond theory Inner and Outer orbital complexes of Cr, Fe, Co, Ni, Cu. Drawback of VBT , IUPAC system of nomenclature	CO 34. CO 35.	To explain the concept ofelectronic configuration of p block elements,their common oxidation states , inert pair effect,about their important compounds. CO-1.To explain their knowledge relating electronic configuration,colour, magnetic properties, different oxidation states catalytic properties for Mn, Fe, Cu
			CO 36.	To discuss Werner's coordination theory, valence bond theory, drawback of VBT, complexities in orbitals of some selected elements etc.
3rd		ELECTROCHEMISTRY 1) Ionic Equilibria Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water; Ionization of weak acids and bases, pH scale, common ion effect; Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts; Buffer solutions;	CO 01. CO 02.	To develop an understanding of electrochemistry and the methods used to study the response of an electrolyte through current of potential To understand why standard reduction potentials are used and how they are determined.
		Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. 2) Conductance Conductance, cell constant, specific conductance and molar conductance; Variation of specific and equivalent conductance with dilution for strong and weak electrolytes; Kohlrausch's law of independent migration of ions;	CO 04	between chemical energy (Gibbs free energy change for a redox reaction) and electrical energy (electromotive force or cell potential) in an electrochemical cell.
		Equivalent and molar conductance at infinite dilution and their determination for strong and weak electrolytes; Ostwald's dilution law; Application of conductance measurement (determination of solubility product and ionic product of water); Conductometric titrations (acid- base) Transport Number and principles Moving-boundary method.	CO 05.	as specific conductance, equivalent conductance and molar conductance. To Explain the effect of dilution on specific conductance, equivalent conductance and molar conductance
		3) Electromotive force Faraday's laws of electrolysis, rules of oxidation/ reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry	CO 06. CO 07.	To understand the ionic mobility of different ions, methods of determination of
		chemical cells, reversible and irreversible cells with examples; Electromotive force of a cell and its measurement, Nernst equation; Standard electrode	CO 08. CO 09.	ionic mobility of ions To understand Kohlrausch's law and its_applications To understand the basic concepts

	(reduction) potential; Electrochemical series; Concentration cells with and without transference, liquid junction potential; pH determinationusing hydrogen electrode and quinhydrone; Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation)	CO 10.	of Arrhenius theory of electrolytic dissociation, evidences in support of Arrhenius theory of electrolytic dissociation and its limitation, To understand Ostwald's dilution law and its application in determination of Dissociation constant of weak electrolyt
	 Aromatic Hydrocarbons Benzene: Preparation: from phenol, by decarboxylation, from acetylene. Reactions: electrophilic substitution reaction (general mechanism); nitration (with mechanism), halogenations (chlorination and bromination), and Friedel-Crafts reaction (alkylation and acylation) (up to 4 carbons on benzene). Organometallic Compounds Introduction; Grignard reagents: Preparations (from alkyl and aryl halide); Reformatsky reaction. Aryl Halides Preparation: (chloro- and bromobenzene): from phenol, Sandmeyer reactionand effect of nitro substituent (activated nucleophilic substitution) Practical: Qualitative semimicro analysis of mixtures containing two radicals. Emphasis should be given to the understanding of the chemistry of different reactions. Cation Radicals: Na⁺,K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Al³⁺, Cr³⁺, Mn²⁺/Mn⁴⁺, Fe³⁺, Co²⁺/Co³⁺, Ni²⁺, Cu²⁺, Zn²⁺, Pb²⁺, Sn²⁺/Sn⁴⁺, NH₄⁺. Anion Radicals: F⁻, Cl⁻, Br⁻, BrO₃⁻, I⁻, IO₃⁻, SCN⁻, S²⁻, SO₄²⁻, NO₃⁻, 	CO 11. CO 12. CO 13. CO 14. CO 15. CO 16.	The preparation of benzene Mechanism and Reactivity of various Aromatic Electrophilic Substitution Reactions The preparations and use of Grigrand reagents The preparation and reactions of aryl halides To undertake Systematic Qualitative Analysis for basic and acid radicals in the given inorganic salts To undertake <i>Semimicro analysis</i> for basic and acid radicals in the given salts
SEC-A2	NO2 , PO4 ² , ASO4 ² , BO3 ² , CIO4 ² / CI ₂ O7 ² ANALYTICAL CLINICAL BIOCHEMISTRY Carbohydrates: Biological importance of carbohydrates, Metabolism, Cellular currency of energy (ATP), Glycolysis, Alcoholic and Lactic acid fermentations, Krebs cycle. Isolation and characterization of polysachharides. Proteins: Classification, biological importance; Primary and secondary and tertiary structures of proteins: α-helix and β- pleated sheets, Isolation, characterization, denaturation of proteins. Enzymes: Nomenclature, Characteristics (mention of Ribozymes), and Classification; Active site, Mechanism of enzyme action, Stereospecificity of enzymes, Coenzymes and cofactors, Enzyme inhibitors, Introduction to Biocatalysis: Importance in "Green Chemistry" and Chemical Industry. Lipids: Classification. Biological importance of triglycerides and phosphoglycerides and cholesterol; Lipid membrane, Liposomes and their biological functions and underlying applications. Lipoproteins: Properties, functions and biochemical functions of steroid hormones. Biochemistry of peptide hormones	CO 01. CO 02. CO 03. CO 04.	Explain the structure carbohydrates and amino acids, their physical and chemical properties and their function in living organisms. Describe the function of enzyme as a catalyst in maximum biological reaction and learn about the function of enzyme, and also see how they are related to things they come across in daily life. Understand the effect of cholesterol and triglycerides in human body Know about steroid hormone which regulates carbohydrate metabolism and has an anti- inflammatory effect on the body. It helps maintain blood pressure and regulate the salt and water balance in our body

		 Structure of DNA (Watson-Crick model) and RNA, Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation, Introduction to Gene therapy. Biochemistry of disease: A diagnostic approach by blood/ urine analysis. Blood: Composition and functions of blood, blood coagulation. Blood collection and preservation of samples. Anaemia, Regulation, estimation and interpretation of data for blood sugar, urea, creatinine, cholesterol and bilirubin. Urine: Collection and preservation of samples. Formation of urine.Composition and estimation of constituents of normal and pathological urine. 	CO 05. CO 06. CO 07.	understand some of the types of disease that might be treatable by gene therapy understand how genetics may be used in the design of drugs. know various biochemical tests to determine glucose, lipids, creatinine and albumin in blood. Correlate laboratory test results with common diseases or conditions know the pathophysiological bases of the most relevant and prevalent diseases in our population; the main biological properties that are altered in these diseases and are examined in a clinical biochemistry laboratory;
4th	CC4/GE4	Alcohols, Phenols and Ethers Alcohols: (up to 5 Carbons). Preparation: 1°-, 2°- and 3°- alcohols: using Grignard reagent, reduction of aldehydes, ketones, carboxylic acid and esters; Reactions: With sodium, oxidation (alkaline KMnO4, acidic dichromate). Diols: Pinacol- pinacolone rearrangement (with mechanism) (with symmetrical diols only). Phenols: Preparation: cumene hydroperoxide method, from diazonium salts; acidic nature of phenols; Reactions: electrophilic substitution: nitration and halogenations; Reimer -Tiemann reaction, Schotten –Baumann reaction, Fries rearrangementand Claisen rearrangement. Ethers: Preparation: Williamson's ether synthesis; Reaction: cleavage of ethers with HI.	CO 01. CO 02. CO 03. CO 04.	The structural differences of Alcohols: 1°-, 2°- and 3°- alcohols, Preparation, Identification of primary, secondary and tertiary alcohols, several reactions of alcohols with mechanism The preparation of diols, Pinacol- pinacolone rearrangement (with mechanism) using diols The various methods for preparing Phenols and their important reactions Preparation of aromatic Ethers and their reactions
		Carbonyl Compounds Aldehydes and Ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone and benzaldehyde): Preparation: from acid chlorides, from nitriles and from Grignard reagents; general properties of aldehydes and ketones; Reactions: with HCN, NaHSO3, NH2-G derivatives and with Tollens' and Fehling's reagents; iodoform test; aldol condensation (with mechanism), Cannizzaro reaction (with mechanism), Wittig reaction, benzoin condensation; Clemmensen reduction, Wolff- Kishner reduction Carboxylic Acids and Their Derivatives Carboxylic acids (aliphatic and aromatic): strength of organic acids: comparative study with emphasis on factors affecting pK values; Preparation: acidic and alkaline hydrolysis of esters (BAc2 and AAC2 mechanisms only) and from Grignard reagents. Carboxylic acid derivatives (aliphatic): (up to 5 carbons). Preparation: acid chlorides, anhydrides, esters and amides from acids; Reactions: Interconversion among acid	<u>Carbo</u> CO 05. CO 06. CO 07. CO 08. CO 09. CO 10. <u>Carbos</u> CO 11.	nyl Compounds The students will be learnt different types of Aliphatic and aromatic Carbonyl compounds both aldehydes and ketones by Preparations of them by different methods both oxidative and reductive Several types of reactions of them with mechanism Reactivity differences between aldehyde and ketones Different Condensation reactions of carbonyl compounds having α H atoms Some named reactions tylic Acids and Their Derivatives The students will have a

	derivatives Reactions Claicon condensation, Derlin		knowledge shout
	uerivatives. Reactions: Galsen condensation; Perkin	CO 12	The atrusture difference of the
	reaction.	το 12.	The structural differences and
	Amines and Diazonium Salts		strengths of carboxylic acids :
	Amines (aliphatic and aromatic): strength of organic bases;		aliphatic and aromatic,
	Preparation: from alkyl halides, Hofmann degradation;	<i>CO 13.</i>	The Preparations of acids
	Reactions: with HNO2 (distinction of 1°-, 2°- and 3°-	<i>CO</i> 14.	several derivative of acids
	amines). Schotten – Baumann reaction Diazo coupling		preparations
	reaction (with mechanism)	Amine	s and Diazonium Salts
	Diazonium calte: Proparation: from aromatic aminos:	<i>CO</i> 15.	The structural differences of
	Diazonium saits. Freparation. nom aromatic animes,	00 10.	Aminess: 1°- 2°- and 3°- amines
	Reactions: conversion to benzene, phenoi, benzoic acid and		Preparation Identification of
	nitrobenzene.		nimany accordant and tertiant
	Nitro compounds (aromatic): reduction under different		primary, secondary and tertiary
	conditions (acidic, neutral and alkaline).		amines, several reactions of
	Amino Acids and Carbohydrates	00.44	aminess with mechanism
	Amino Acids: Preparations (glycine and alanine only):	<i>CO</i> 16.	The preparation of diazonium
	Strecker synthesis, Gabriel's phthalimide synthesis; general		salts from aromatic amines
	properties: zwitterion, isoelectric point.	<i>CO</i> 17.	The various methods for
	Carbohydrates: classificationand general properties:		preparing different organic
	glucose and fructose: constitution: osazone formation:		compounds by using benzene
	ovidation-reduction reactions: ascending (Kiliani –Fischer		diazonium salts
	method) and descending (Duff's method) in	Amino	Acids and Carbohydrates
	method) and descending (Run's method) m	<i>CO 18.</i>	The students will be learnt
	monosaccharides (aldoses only); mutarotation.		different types of Amino acids
			and Carbohydrates by
		CO 19.	Preparations of them by different
			methods
		CO 20	Several types of reactions of
		00 201	them with mechanism
		CO 21	zwitterion isoelectric point in
		0021.	case of Amino acids
		CO 22	Different reactions of alderes by
		<i>CU 22.</i>	bine entreactions of aluoses by
		<i>co</i> 22	decreasingary
		<i>CO 23.</i>	Elimentary idea about
			Mutarotaion i.e, change in the
			specicific rotation of aldohexoses
			with time
	Crystal Field theory	<i>CO 24.</i>	To express the concept of Crystal
	Crystal field effect,octahedral symmetry, tetrahedral		Field theory
	symmetry, Crystal field stabilization energy. Comparison of	<u>Qualit</u>	<u>ative Analysis of Single Solid</u>
	CFSE for octahedral and tetrahedral complexes .John Teller	<u>Organ</u>	<u>ic Compounds</u>
	distortion	<i>CO 25.</i>	After completing this module
	Practical		students will be able to analyse
	1. Qualitative Analysis of Single Solid Organic		the given single solid organic
	Compound(s)		compound by
	Experiment A: Detection of special elements (N_Cl and S) in	CO 26.	Detection of special element by
	organic compounds Experiment R. Colubility and		Lassaigne's test
	Classification (columns: LAD dil UC dil MaOII)	CO 27	Solubility and classification
	Gassification (Solvenis: n20, ull. nCl, ull. NdOn)		(solvents: H_2O , 5% HCl 5% NaOH
	Experiment C: Detection of functional groups: Aromatic-		and 5% NaHCO3)
	NU_2 , Aromatic - NH_2 , -COOH, carbonyl (no distinction of –	CO 28	Identification of nitrogeneous
	CHO and >C=O needed), -OH (phenolic) in solid organic	60 20.	and non nitrogonoous functional
	compounds.		and non-ind ogeneous functional
	Experiments A - C with unknown (at least 6) solid samples	CO 20	groups.
	containing not more than two of the above type of	LU 29.	The structure of the given
			compound may be achieved by

	functional groups should be done.		corresponding suitable derivative
	2. Identification of a pure organic compound		preparation and
	Solid compounds: oxalic acid, tartaric acid, succinic acid,		Identification of a Pure Organic
	resorcinol, urea, glucose, benzoic acid and salicylic acid.		Compound
	Liquid Compounds:methyl alcohol, ethyl alcohol, acetone,	CO 30.	The students will be able to
	aniline, dimethylaniline, benzaldehyde, chloroform and		identify a single compound
	nitrobenzene.	<i>CO 31.</i>	Single organic compounds can be
			identified by checking its Physical
		00.00	state (Solid and Liquid)
		LO 32.	Then Identification of some solid
			and liquid compounds are done
		CO 22	primarily by using
		60 55.	Action of heat EaCl, test,
			mirror test Eluorescence test
			Fahling's test atc
		CO 34	After having the idea about the
		60 54.	probable name and nature of the
			compound it is identified
			correctly by doing a single test for
			each solid and liquid compounds.
	PHARMACEUTICALS CHEMISTRY	<i>CO 01.</i>	The drug designing
	Drugs & Pharmaceuticals	CO 02.	The synthesis of several drugs
	Drug discovery, design and development; Basic		e.g., Analgesics Agents,
	Retrosynthetic approach. Synthesis of the representative		Antipyretic Agents, Anti-
	drugs of the following classes: analgesics agents, antipyretic		inflammatory Agents, Antibiotics
	agents, anti- inflammatory agents (Aspirin, paracetamol,		Agents, Antifungal Agents,
	lbuprofen); antibiotics (Chloramphenicol); antibacterial and		Antiviral Agents, and HIV-AIDS
	antifungal agents (Sulphonamides; Sulphanethoxazol,		related drugs by adopting the
	Sulphacetamide, Trimethoprim); antiviral agents		general established method.
	(Acyclovir), Central Nervous System agents (Phenobarbital,		Aerobic and anaerobic
CEC A 2	Diazepam), Cardiovascular (Glyceryl trinitrate), antilaprosy	<u> </u>	Iermentation
SEC-A-Z	(Dapsone), HIV-AIDS related drugs (AZT- Zidovudine).	LU U3.	Production of (1) Ethyl alcohol
	Module II: Fermentation		Anu citi ic aciu, (ii) Anubiotics; Ponicillin, Conhalosnorin
	Aerobic and anaerobic fermentation. Production of (i) Ethyl		Chloromycetin and Strentomycin
	alcohol and citric acid, (ii) Antibiotics; Penicillin,		(iii) Lysine Glutamic acid
	Cephalosporin, Chloromycetin and Streptomycin, (iii)		Vitamin B2 Vitamin B12 and
	Lysine, Giutamic acid, Vitamin B2, Vitamin B12 and Vitamin		Vitamin C.
	U. Modulo III: Hands On Brastical	Hands	<u>On Practical</u>
	1 Dronaration of Agnirin and its analysis	CO 04.	Preparation of Aspirin and its
	2 Preparation of magnesium hisilicate (Antacid)		analysis.
	2. I reparation of magnesium disincate (Antactu).	CO 05.	Preparation of magnesium
 			bisilicate (Antacid).
	INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE	CO 01.	Examine methodically the
	Silicate Industries:		physico -chemical properties of
	Glass: Glassy state and its properties, classification (silicate		and access their avitability in the
	and non-silicate glasses). Manufacture and processing of		and asses their suitability in the
	glass. Composition and properties of the following types of		keeping in mind the fields of
	glasses: soua inne glass, reau glass, armoured glass, safety		application of those products and
	photocensitive glass, inuorosificate, coloured glass,		hyproducts like glasses ceramics
	Ceramics: Important clays and foldspar coramic their		cements.
	types and manufacture Hightechnology ceramics and their	CO 02.	Examine methodically the
	spes and manufacture. Institutionogy ceraines and then		physico chemical properties and

5тн	DSE-A-2	 fullerenes carbon nanotubes and carbon fibre. <i>Cements:</i> Classification of cement, ingredients and their role, Manufacture of cement and the setting process, quick setting cements. Fertilizers: Different types of fertilizers. Manufacture of the following fertilizers: Urea, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate. Surface Coatings: Objectives of coatings surfaces, preliminary treatment of surface, classification of surface coatings. Paints and pigments-formulation, composition and related properties. Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents. Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax polishing, Water and Oil paints, additives, Metallic coatings (electrolytic and electroless), metal spraying and anodizing. Batteries: Primary and secondary batteries, battery components and their role, Characteristics of Battery.Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell. Alloys: Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization), demanganization, desulphurization dephosphorisation) and surface treatment (Arand heat treatment, nitriding, carburizing). Composition and properties of different types of steels. Catalysis: General principles and properties in organic compounds, preparation and explosive properties in organic compounds, preparation of thesplosive properties of lead azide, PETN, cyclonite (RDX).Intro	CO 03. CO 04. CO 05. CO 07. CO 08. CO 09. CO 10.	different chemicals used as fertilizers to find out their suitability for use in the production of different agricultural produce. Suggest appropriate methods of use of different types of surface coating materials from the angle of their varied physico-chemical properties vis a vis areas of application in the domestic and industrial fields. Classify different types of batteries used in industries according to their components, functions, Applications and suitability. Classify different types of alloys on the basis of their compositions, properties and scope of use. Narrate the methodology for manufacture of different types of steels in the industry. Classify different types of catalysts on the basis of their physico- chemical properties. Discuss industrial use of catalyst like zeolite. Discuss the chemistry of some selected items of explosives and the reasons behind such property of the chemicals. Analyze systematically the components present in selected chemical compounds and estimate their relative proportions. Undertake preparation of pigment in the laboratory.
-----	---------	---	--	---

		complexometric titration). 6. Analysis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples.	
		7. Analysis of Cement.	
		Analytical Methods in Chemistry	ANALYTICAL METHODS IN
		Optical methods of analysis	CHEMISTRY
		fundamental laws of spectroscopy and selection rules	
		validity of Beer-Lambert's law	CO 01 Optical matheds of analysis
		<i>UV-Visible Spectrometry:</i> Basic principles of instrumentation	CO 02 IIV-Visible Spectrometry
		(choice of source,monochromator and detector) for single	<i>CO 0.3.</i> Basic principles of quantitative
		and double beam instrument	analysis
		Basic principles of quantitative analysis: estimation of metal	<i>CO 04.</i> Infrared Spectrometry
		ions from aqueous solution, geometrical isomers, keto-enol	<i>CO 05.</i> Flame Atomic Absorption and
		tautomers. Determination of composition of metal	Emission Spectrometry
		mole ratio method	CO 06. Thermal methods of analysis
		Infrared Spectrometry: Basic principles of instrumentation	CO 08 Separation techniques:
		(choice of source, monochromator& detector) for single and	<i>CO 09.</i> Solvent extraction:
		double beam instrument; sampling techniques.	Classification, principle and
		Structural illustration through interpretation of data, Effect	efficiency of the technique.
		and importance of isotope substitution.	<i>CO 10.</i> Mechanism of extraction:
		Elamo Atomic Abcountion and Emission Spectrometry	extraction by solvation and
		Flame Atomic Absorption and Emission Spectrometry: Flame Atomic Absorption and Emission Spectrometry: Basic	chelation
		principles of instrumentation (choice of source.	continuous and counter current
		monochromator, detector, choice of flame and Burner	extractions
		designs. Techniques of atomization and sample	<i>CO</i> 12. Qualitative aspects of solvent
		introduction; Method of background correction, sources of	extraction: extraction of metal
6 ^{тн}	DSE-B-2	chemical interferences and their method of removal.	ions from aqueous solution,
		Techniques for the quantitative estimation of trace level of metal ions from water samples	extraction of organic species
		Thermal methods of analysis	from the aqueous and
		Theory of thermogravimetry (TG), basic principle of	CO(13) Ouantitative aspects of solvent
		instrumentation. Techniques for quantitative estimation of	extraction: extraction of metal
		Ca and Mg from their mixture.	ions from aqueous solution,
		Electroanalytical methods:	extraction of organic species
		Classification of electroanalytical methods, basic principle	from the aqueous and
		Techniques used for the determination of equivalence	nonaqueous media
		points. Techniques used for the determination of pKa	co 14. Chromatography: Classification,
		values.	technique.
		Separation techniques:	<i>CO 15.</i> Mechanism of separation:
		Solvent extraction: Classification, principle and efficiency of	adsorption, partition & ion
		the technique. Mechanism of extraction: extraction by	exchange.
		Technique of extraction: batch continuous and counter	CO 16. Development of chromatograms:
		current extractions.	methods
		Qualitative and quantitative aspects of solvent extraction:	<i>CO 17.</i> Oualitative and quantitative
		extraction of metal ions from aqueous solution, extraction	aspects of chromatographic
		of organic species from the aqueous and nonaqueous media.	methods of analysis: IC, GLC,
		Chromatography: Classification, principle and efficiency of	GPC, TLC and HPLC.
		the technique. Mechanism of separation: adsorption,	
		Development of chromatograms, frontal elution and	U18. Kole of computers in instrumental methods of
		displacement methods.	insu umentai methous oi

Ī	Qua	alitative and quantitative aspects of chromatographic		analysis.
	me	thods of analysis: IC, GLC, GPC, TLC and HPLC.	CO 19.	The students will be technically
	Ste	reoisomeric separation and analysis: Measurement of		guided by the following ways
	opt	tical rotation, calculation of Enantiomeric excess (ee)/	CO 20.	Separation Techniques by
	dia	stereomeric excess (de) ratios and determination of		Chromatography
	ena	antiomeric composition using NMR, Chiral solvents and	СО 21.	Separation and identification of
	chi	ral shift reagents. Chiral chromatographic techniques		the monosaccharides present in
	usi	ng chiral columns (GC and HPLC).		the given mixture (glucose &
	Rol	e of computers in instrumental methods of analysis		fructose) by paper
				chromatography. Reporting the
	PR	ACTICALS: Analytica Methods in Chemistry Methods		Rf values.
	in	Chemistry	СО 22.	Separate a mixture of Sudan
				yellow and Sudan Red by TLC
	Мо	dule IX: Separation Techniques by Chromatography		technique and identify them on
	(a)	Separation and identification of the monosaccharides		the basis of their Rf values.
		present in the given mixture (glucose & fructose) by	СО 23.	Chromatographic separation of
		paper chromatography. Reporting the R _f values.		the active ingredients of plants,
	(b)	Separate a mixture of Sudan yellow and Sudan Red by		flowers and juices by TLC
		TLC technique and identify them on the basis of their R _f	CO 24.	Separation Techniques by
		values.		Solvent Extractions
	(c)	Chromatographic separation of the active ingredients	CO 25.	To separate a mixture of Ni2+&
		of plants, flowers and juices by TLC		Fe2+ by complexation with DMG
		- F		and extracting the Ni2+-DMG
	Мо	<i>dule X:</i> Separation Techniques by Solvent Extractions		complex in chloroform, and
	То	separate a mixture of Ni ²⁺ & Fe ²⁺ by complexation with		determine its concentration by
	DM	IG and extracting the Ni ²⁺ -DMG complex in chloroform.		spectrophotometry.
	and	d determine its concentration by spectrophotometry.	CO 26.	Analysis of soil
		j - F F	CO 27.	Determination of pH of soil.
	Мо	dule XI: Analysis of soil:	<i>CO 28.</i>	Estimation of calcium.
	(i)	Determination of nH of soil		magnesium, phosphate
		Estimation of solaium magnasium phasehots	CO 29.	Ion exchange:
		dulo XII. Ion auchango	CO 30.	Determination of exchange
	MO	aute XII: 100 exchange:		capacity of cation exchange
	Det	termination of exchange capacity of cation exchange		resins and anion exchange
	res	ins and anion exchange resins.		resins
	MO	aule xIII: Spectrophotometry	CO 31	Spectrophotometry
	1.1	Determination of pKa values of indicator using	CO 32	Determination of nKa values of
	S	pectrophotometry.	00 0 1 ,	indicator using
	2. [Determination of chemical oxygen demand (COD).		spectrophotometry
	3. I	Determination of Biological oxygen demand (BOD).	CO 33	Determination of chemical
			00.00.	oxygen demand (COD)
			CO 34	Determination of Biological