B.Com. Part - II (Honours) Examination

Paper: C21A

Subject: Advanced Business Mathematics

F.M. - 25

Group - A

Answer any one question

5

1. Prove that the matrix $A = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$ is orthogonal.

2. If
$$f(x) = x^2 - x$$
, then show that $f(y + 1) = f(-y)$. 5

3. Evaluate:
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
.

Group – B

Answer any two questions

4. Solve by Cramer's Method: x + y + z = 4; x - 2y + z = -2; 3x + 2y + 7z = 14. 10

5. If
$$x + y + z = 0$$
, show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = 0.$ 10

6. If
$$x^m y^n = (x + y)^{m+n}$$
, show that $\frac{dy}{dx} = \frac{y}{x}$. Hence show that $\frac{d^2y}{dx^2} = 0$. 10

- 7. A firm produces x tones of output at a total cost of Rs. C, where $C = \frac{1}{10}x^3 5x^2 + 10x + 5$. At what level of output will the marginal cost and the average variable cost attain their respective minima? 10
- 8. Find by integration the area of the triangle bounded by the line 4y 5x = 0, the *x*-axis and the ordinate x = 4. Verify your result by using the definition of area of a triangle as half the product of the base and the altitude. 10

9. Evaluate: (i)
$$\int \frac{dx}{x\{(logx)^2 + 4logx - 12\}}$$
 (ii) $\int_0^1 \frac{(x+1)dx}{x^2 + 2x + 3}$. 5 + 5